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Quantum-classical correspondence in localization of eigenstates
for a system having mixed-type classical dynamics
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We have examined the localization properties of quantum eigenstates for a system having mixed-type
classical dynamics. Emphasis is given to the structure of eigenfunctions and the local spectral density of states.
The nature of strongly localized eigenstates can be explained by considering the corresponding classical
motion on the Kolmogorov-Arnold-Moser tori. The weak localization of nearly delocalized eigenstates is not
a quantum effect as is dynamical localization but a consequence of classical dynamics.
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PACS numbdys): 05.45-a

I. INTRODUCTION [17], where in the latter the main attention is paid to the
banded random matricéBRM) ensemblg 18,19. Casatiet

The quantum-mechanical behavior of systems that aral. introduced the ergodicity parameterdepending on both
chaotic in the classical limit has been the subject of considthe band width and average localization length, which plays
erable recent interedtl-3]. One major modification that an important role in determining the localization properties
guantum mechanics introduces to the classical picture of den the BRM[20]. When it is large, the eigenfunctiof&F’s)
terministic chaos is the suppression of chaotic diffusion, aof BRM become ergodic, i.e., delocalized over the whole
phenomenon usually referred to as dynamical localizatiorenergy shell. In the opposite case, however, they appear to be
(DL). Since it was first observed in numerical simulations oflocalized in the eigenstate space of the unperturbed Hamil-
the kicked rotator moddH], this striking quantum phenom- tonian. When quantum localization occurs, the EF's were
enon, a dynamical version of Anderson localization in solidsshown to be typically narrow and solid with centers ran-
[5], has been under intense investigation. In particular, theodomly scattered within a semicircle energy shell, while the
retical and experimental investigations of microwave ionizadocal spectral density of stat€sSDS) is extended over the
tion of Rydberg atom$6—10] and recently of momentum whole shell, but is sparse.
transfer in cold atom$l1l-14 have provided evidence for Generic conservative Hamiltonian systems exhibit mixed-
the appearance of DL. type dynamics; the regular Kolmogorov-Arnold-Moser

It should be noted, however, that investigations conductedK AM ) tori and irregular chaotic trajectories coexist in phase
up to now have been limited to DL occurring in time-driven space. In 1973 Percival conjectured that, in the semiclassical
systems. Quantum calculations performed in the past havéemit, the spectrum of a generic dynamical system consists of
treated the external driving force classically and shouldwo parts with strong contrasting properties: a regular and an
strictly speaking be categorized as semiclassical treatmentsregular part{21-23. Bohigaset al. [24] achieved a sys-
The question still remains whether the existence of DL hasematic separation of eigenstates of two coupled quartic os-
been confirmed by fully quantum calculations. Recently, itcillators into a regular and an irregular group. The separation
has been showfl5] that DL also appears in a nearly circular was based on the observation that the levels associated with
stadium billiard. From the estimate of the localization lengthquantized tori appear as quasidegenerate doublets in the
in the angular momentum space, the authors of RES]  spectrum of systems having discrete symmetries. By study-
found that the statistics of neighboring level spacing couldng the regular and irregular spectra independently after the
change from Wigner-Dyson to Poisson when the energypeparation, they showed that Percival’'s scheme works well.
range is varied. To our knowledge this is the first evidence In this paper we address the issue of quantum localization
for DL in a conservative Hamiltonian system. in a typical generic conservative Hamiltonian system,

How one should approach the question of localization innamely, the Pullen-Edmond syst¢&b]. We look in particu-
conservative Hamiltonian systems is not immediately clearlar for quantum-classical corresponderioe noncorrespon-
since energy is conserved in both classical and quantum sydence by investigating the relation between the localization
tems, we must follow the time evolution only on the energyproperties of LSDS and those of EF’s. Our model system and
hypersurface. In classical mechanics this is easily realized bigs Hamiltonian structure are described in Sec. II. In Sec. llI
considering the dynamics on the energy hypersurface, but ilocalization properties of LSDS and EF’s are investigated in
guantum mechanics the only states with fixed energy ardetail. For our model system the structure of LSDS can eas-
eigenstates unless the spectrum is degené¢i&e This is  ily be interpreted by investigating classical dynamics. We
resolved by considering the flow between phase-space locathow eventually that a strong quantum-classical correspon-
ized stategusually coherent statesAnother approach is to dence exists for both EF’s showing strong localization and
investigate the localization properties of eigenstates for &F’s exhibiting delocaliztion or weak localizatid26]. Fi-
typical conservative Hamiltonian or random matrix ensemblenally, concluding remarks are given in Sec. V.
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FIG. 1. The classical Poincaseirfaces of section of the Pullen-
Edmond system defined by E{l) for the casem=1, »,=0.8, b)

wy=1.25,A=0.3, and\E=19.75 in an arbitrary unit systen(a)
Thex-p plot drawn aty=0 andp,>0. (b) They-p, plot drawn at

x=0 andp,>0.
FIG. 2. (a) Structure of the Hamiltonian matrid, . in terms
of the quantum numbers, o’ of the eigenstates of the unperturbed
ll. MODEL SYSTEM AND HAMILTONIAN HamiltonianHy. H, ./ is nonzero only along the linegb) The

STRUCTURE magnitude of the matrix elements represented by the squde.in

. . The diagonal values are set to zero for clarity.
The system we consider is the Pullen-Edmond system, a g y

two-dimensional autonomous Hamiltonian system represent-
ing two nonlinearly coupled simple harmonic oscillators.

The Hamiltonian for the system is given by E—E’'=yE (E is the total energyis performed simulta-
neously. The geometry of classical phase space is thus deter-

mined only by the product ok and E. When the scaling
parameter\E is small, many stable KAM tori originated
from resonances between the two degrees of freedom exist in
the chaotic region. As the parameter increases, however,
most KAM tori are replaced by irregular trajectories and
only small portions of the phase space remain stable. When
the parameter exceeds approximately 12.0, nearly the entire
phase space becomes irregUlar], except the region near
For our computation we fixn=1, v,=0.8, w,=1.25, and  the origin in which the coupling.x?y?/2 is small and thus
A=0.3in an arbitrary unit system. We note that the transforthe trajectories remain regulésee Fig. 1

mation\—\'=\/y (y = cons} does not alter the dynami- We represent the total Hamiltoniad in terms of the

cal nature of the system if the transformatior-x’ = \Jyx,  eigenstates nx,ny) of the unperturbed Hamiltonia,,
y—Y' =\7y, P—Pr=\¥Px, Py—P,=\¥p,, and thus where the matrix elements have the form

1 m A
H( P Py) = 5 (P PY) + 5 (0 + ogy?) + 5 xPy?

A
=Hq+ Exzyz. (1)
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(ng,nglH[n,ny) ={hw,(n,+1/2)+ hwy(n,+ 1/2)}5n; 'nxén; n, T mywyw M (2n,+1)(2ny+ 1) 6w ,nxén)’/ ny

+ \/nx(nx_ 1)ny(ny_ 1) 5n)’( ,nxfz‘sn)’, ,ny72+ \/(nx+ 1)(nx+ 2)ny(ny_ 1) 5n)’( ,nx+25n)’, ,ny72

(20 1)Vny(ny = 1) 8y 0, Sns 2+ V(M= D) (M 1)(Ny+2) 8y i, 287 42
+ \/(nx+1)(nx+2)(ny+1)(ny+2) 5n)’( ,nx+25n)’,,ny+2+(2nx+ 1) \/(ny+l)(ny+2)5n)’( ,nxén)’,,ny+2

+(2ny+ 1) an(nx_l) 5n)’( ,nx—25n)’,,ny+(2ny+1) V(nx+1)(nx+2)5n>’( ,nx+25n)’,,ny}/16ﬁ- (2)

Due to the choice of different values ef, and w,, our  and

system has the symmetry of ti&, point group which has 5 )

four irreducible representations referred tofgsA,,B,, and _ Moyy Py

B, [28]. From now on we only consider th&, representa- &= 2h 2hmoy

tion for which basis functions are even in bottandy. Our

labeling of the basis, the eigenstatesHy, uses a single In Figs. 3a and 3b) we plot F(x,p,,y=0p,

quantum numbes as indicated in Table I. These eigenstates= y/2m S p;—m?wix?) for the a=65 (n,=0n,

can be divided conveniently into subgroups, each having the-20) and a=60 (n,=10n,=10) states, respectively,

same value ofrf,+n,). where we sefi =1 in an arbitrary unit system we adopt. The
Figure 2a) shows the global structure of the matrix ele- functionsF® plotted in Figs. 8a) and 3b) may be consid-

mentsH,, .-, whose band structure differs from those of theered as quantum Poincaserfaces of section corresponding

Wigner BRM and Ref[29]. In particular we see from Fig. to the unperturbed eigenstatesaof 65 anda=60. One can

2(b) that off-diagonal elements have a typical periodic strucclearly see, by comparing Figs(a and 3b) with Fig. 1(a),

ture. The off-diagonal matrix elemerits, - are small when  that the distribution of ther=60 state is localized mostly at

a and/ora’ correspond to the edges of a subgroup of eigenthe classically chaotic region, while that of the- 65 state is

states associated with a smajl or n,, while they are large concentrated in the classical Kolmogorov-Arnold-Moser

whena anda’ correspond to the middle of a subgroup. This (KAM) island near the origin.

has a simple classical interpretation. The classical trajectories To gain further insight we consider the motion in the co-

of a phase space point belonging to the edge states are profrdinate space. The classical KAM island near the origin in

ably regular, because a smajl(n,) means a small coupling Fig. 1(a) corresponds to the straight line motion along yhe

Ax?y?/2 and thus oscillation occurs predominantly along theaxis indicated by the vertical line with arrows in Fig. 4. This

y(x) axis. motion may be considered as a classical representation of the
The periodic structure seen above can be better undeir=65 unperturbed eigenstate because this eigenstate with

stood by examining the phase-space structure of the system,=0 has no node along thedirection. We also show the

For this purpose we choose to use the Q function, i.e., th@ensity|y(x,y)|? of the wave function of ther=65 state in
quantum phase-space distribution function in the cohererthe same figure.

state representatidi830,31. TheQ function best fits our pur-

®

pose because it has the simplest structure among quantum IIl. LOCALIZATION OF EIGENSTATES
distribution functions and still displays all the essential fea-
tures of the states of the system. TQdunction for an un- For our discussion of localization, we first find the unitary

perturbed eigenstater) of our system characterized by the matrix U that diagonalizes the total Hamiltonih

qguantum numbers, andn, is given by[31]
X Y UTHU= Hdiagona| (6)

FO(x,py,Y,Py) = ggxe*fxggye*fy, (3y  Denoting the _matrix elements &f ascp,, wherea and m
refer, respectively, to the quantum numbers of the eigen-
states of the unperturbed Hamiltonid#, and the total
where HamiltonianH, the column vectord,,c2,c3 , ...) repre-
sents themth eigenstatém) of H expressed in terms of the
3 (4) eigenstates ofi (i.e., the spectrum of the stajm)), while
2k 2hmay the row vector €4,c5,c5, ...) represents therth eigen-

(27h)*nn,!

mwxx2 p>2<

TABLE |. Labeling of eigenstates dfiy belonging to theA; representation.

a o 1 2 3 4 5 ... 55 56 57 58 59 60 61 62 63 64 65--

n, 0 2 0 4 2 O ... 20 18 16 14 12 10 8 6 4 2 O-.-.
y 0 0 2 0 2 4 ... 0 2 4 6 8 10 12 14 16 18 20---
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FIG. 4. Representation in the coordinate space. The line with
arrows indicates the trajectory of the periodic orbit corresponding to
the stable island. The density(x,y)|? of the a=65 eigenfunction
and the potential energy contour are also shawandy are mea-
sured in arbitrary units.

ticular value ofm) and as small as 1 when the stéte is
uniformly distributed (i.e., when c%=1/JN for all m)
[32,34.

Figure 5 showd. pg Of the unperturbed eigenstates which
indicates clearly that the eigenstates) belonging to the
edges of each subgrouype., those states with a smal} or
ny) have large values df pg. As explained in the previous
section, these states correspond classically to regular trajec-
tories around stable KAM tori and can thus be expected to
exhibit strong localization. In order to emphasize the strong
correlation between localization and the quantum numbers
(nx,Nny), we plot in Fig. 6L pg versusn,/(n,+ny). Clearly,

Lpr is large whenn,/(n,+ny)~0 (i.e., whenn,~0) and
When ny/(ny+ny)~1 (i.e., whenn,~0). We note that the

5|

-10 . .

-10 10

X

FIG. 3. Quantum Poincarsurfaces of section of the Q repre-
sentation of(a) the a= 65 state andb) the =60 state, which lie
mostly in the regular and irregular regions of the classical Poincar
surfaces of sectiofFig. 1), respectivelyx andp, are measured in

arbitrary units.

state|a) of Hy expressed in terms of the eigenstatesHof

The matrix elements;, now contain all the information con-
cerning the localization properties of the eigenstates.

graph is not symmetric about /(n,+n,)=0.5, because,
and wy are not the same.
B. Localization of EF

We also use IPR in order to investigate the localization
properties of EF’s. The IPR of an eigenstat® of the total

Hamiltonian is given by
100 T T T T

A. Localization of LSDS

In this paper we adopt the inverse partition rgfieR) as
the localization measure. The IPR of the unperturbed eigen-
state|a) is calculated from

80

60 |
N

Lipr(@)=N >, leml®, 4ot
m=1

LIPR(O(')

(@)

20

WA

600 700

whereN is the total number of eigenstatfs) of the total
HamiltonianH. In our actual calculation df pr(a), we have
included in the sum only classically accessible states among
all possible statepm). The numbeiN in Eq. (7) can thus be
considered as the number of classically accessible eigen-
states|m), and it varies witha. Lpg(@) as defined by Eq. FIG. 5. L,pr Of LSDS for 306<@<700. The positions of the

(7) can take a value as large Bavhen the statga) is most  eigenstates belonging to the edge of each subgroup are indicated by
highly localized(i.e., whencp, is nonzero for only one par- dashed lines.

0
300
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whereN is now the total number of eigenstates) of the o
unperturbed Hamiltoniai . We also consider only classi- L 0.005

cally accessible states when calculatiingg(m) according

to Eq.(8).
We choose EF’s, arranged in ascending order of eigenen ] |
ergy, from 300th to 700th, which correspond to the region 0.000 - ‘ 50 . 1000 1500 2000
19.75<\E=<32.57. In this range olhE, almost the entire
classical phase space is chaotic. Figure 7 sHowgof these o

eigen_states. The distribution seen in Fig. 7 seems .rather ran- o - o (a Spectrum of a typical localized EF for whicke
dom, in contrast (o the regular pattern of Fig. 5. This reflects_ »; 75 1534, andLpg(m) ~220.5.(b) Spectrum of a typica
the fact that for a System having mixed type classical dynamggqc4jized EF for which\E=27.81, m=535, and Lpr(m)
ics, it is normally difficult to tell whether a given eigenstate _
|m) is associated with regular or irregular classical trajecto-

ries. Despite the difficulty, however, it can be seen from Fig. ) )

7 that the eigenstatdsn) can largely be divided into two Strongly localized state such as the<534) state of Fig.
groups, “localized states” characterized by large values of8(d), is not completely delocalized, which we refer also to as
Lpr(m) and “delocalized states” having small values of Weakly localized 26].

L,pr(mM). In Figs. 8a) and 8b), respectively, we show the In order to investigate further the characteristics of the
spectrum of typical localizech{=534, L,;r=220.5) and de- localized and delocalized states, we recast Fig. 8 into a two-
localized (=535, L,pr=3.588) states drawn in terms of dimensional shadow plot of the spectrum drawn in terms of
the quantum number of the unperturbed eigenstates. It the two quantum numbers, and n, of the unperturbed
should be noted that them(=535) state of Fig. &), al- eigenstates. The result is shown in Fig. 9, where the prob-

though we call it a delocalized state to distinguish from adbility is indicated by the degree of darkness. It can be
clearly seen that the localizednE& 534) state has the prob-

, ; : ' ability distribution localized nean,=0, whereas the delo-

calized (n=535) state shows a more or less randomly dis-

400 - : . tributed probability.

It may be worthwhile to recall that althougty andn,, are

300 L 4 not good quantum numbers for the system described by the
total HamiltonianH, the mean valuegn,) and(n,) can of

200l ﬂ ] course be defined and calculated for a given eigenstate

NI MIFTIN I’ .h” “ LJ SN

Lipr(m)

of H. In Fig. 10 we showL pg(m) plotted as a function of
(ny/{ny+ny). One can immediately see that a remarkable
correspondence exists between Fig. 10 and Fig. 6. This cor-
respondence betwednpg of EF’'s andL pr of LSDS's is
significant, because, as discussed earlier, the latter has a
simple classical interpretation.

m The physical characteristics of our localized and delocal-

ized states can be best illustrated by looking at the statistical

FIG. 7. L pg Of EF’s for 306=sm=700. properties of eigenvalugsl7,33 belonging to each group

300 400 500 600 700
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FIG. 11. Nearest neighbor level spacing distributions(&rthe
FIG. 9. Spectrum ofa) the localized (n=534) state an¢b) the localized eigenstates having valueslgfg larger than 10 andb)
delocalized (n=535) state drawn as a function of andn,. The  the delocalized eigenstates having valued @k smaller than 10.
probability is indicated by the degree of darkness. The inséd)in  The solid and the dashed curves represent the Wi¢lB@E) dis-
shows an expanded view of the spectrum of the localized ( tribution and the Poisson distribution, respectively.
=534) state.
161 localized states and 544 delocalized states within the

separately in Percival’s spiri2l]. We set the dividing line fange we consider. In Figs. () and 11b) we show nearest-
between the localized and delocalized states to be a somBeighbor level spacing distributions for the localized and de-
what arbitraryl pg value of 10; i.e., EF’s witiL pr=10 are localized states, respectively. One can see that the level spac-
considered as localized states and EF’s Withg<10 delo- Ing distributions of the localized and delocalized states
calized states. Our choice of thges value 10 has no par- exhibit roughly Poisson-like behavior and Wigner-like be-

ticular physical significance. The results shown below ard'avior, respectively. For a closer look we show in Fig. 12 the
independent of this value, unless it is chosen unrealistically

1.0 T T T

too large or too small. With our choice bfpg= 10, there are oo o
! ooag
o
TS T T [m]
a
q00L o+ ) . A o
u]
+ I\(“> 05l / nO i
300 . o § ' oo
o +
N K4 i v [ oL Ll
- + - ++ S oom® mm
+ +":

100 | + A 0.0 f 1 )
PN Ve # 0 10 20 30 40
* o NS

N I, /AP o S n
0.0 0.5 1.0
FIG. 12. A; statistics for the localized eigenstatéspen

<nx>/<nx+ny> squares and the delocalized eigenstatéi#ied squares The solid

and the dashed curves represent the WigB&E) distribution and
FIG. 10. L,pg versus(n,)/{ny+ny) of EF's. the Poisson distribution, respectively.
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1000 — T T elements olJ coincide with the quantum numbemsassoci-
* * ] ated with highL pg(m). This is another indication that the
y + localization of EF's is directly linked to the localization of
> o T LSDS’s which is in turn directly related to the localization of
+H+

+ ] classical trajectories on the KAM tori. It is noted that the

800 |

s00 | » 11“ 1 upper branch and the lower branch in Fig. 13 correspond to
+ + the localization of EF’s along theaxis and they axis in the
a +++ o coordinate space, respectively.
a Finally we take a closer look at the localization properties
o4 of delocalized EF's having very smallpgr (<3.5). We
+ have already seen from Fig(l8 that a typical delocalized
200 | & . eigenstate is not completely delocalized, rather it is weakly
localized and sparse. In Fig. 14 we show the probability
distributions of some delocalized EF’s drawn as a function of
00 2(')0 ' 460 6(')0 ’ 8(')0 7000 the unperturbed enerdy, ca!culated by both qlagsica}l and
quantum methods. To obtain the classical distribution, we
m first chose 50 sets of initial coordinates and momenta
_ ) ) (X0,Px0:Y0:Py0) On the constant total energy surfaée
FIG. 13. The elements of the unitary matkixhaving the abso-  _ E,., whereE,, is the energy of the EF being considered. In
lute square value larger than 0.1. order to assure that our initial points correspond to the delo-
o ) i calized EF, we first chos&, and p,g randomly from the
A statistics of the eigenvalues of the localized and delocalzpgotic sea of Fig.(® and sety,=0. Thep, value is then
ized states. It can be seen that the eigenvalues of the delgyqg by Y
calized states follow the Wigner distribution fairly closely,
while those of the localized states exhibit the behavior inter- ) ) m ,,
mediate between the Poisson and Wigner distributions. We om (Pt Pyo) + 5 @3Xo=En. 9
mention that the level spacing distribution afg statistics
of the entire eigenvalues of both the localized and delocalggr each set of initial POiNtsXg, Pxo.Yo,Pyo) SO chosen, we
ized states exhibit Wigner-like behavior. then computed numerically classical trajectories to obtain
Now we investigate the structure of the unitary matdix (X(t) . Px(tn) Y (tn) . Py(tn)), Wheret,=nAt and At is the
In Flg 13 we show the matrix elements whose abSOlUtQime Step for integration_ At eac['h, we also Computed
square is greater than 0.1. We mention that 0.1 has no pag(t,) given by
ticular physical meaning. It is simply a fairly large number,
because, if we assume a uniform distribution in both EF’s 1, ) m. ,, 2 2
and LSDS's, the values of the matrix elements would be Eo(tn)= 5 -[P(tn) +Py(tn) ]+ 5 [@x*(th) + 0y“(tn)].
equal to IN(~0.001). Comparing Fig. 13 with Fig. 5 and (10)
with Fig. 7, it can be concluded that the quantum numlaers
associated with large matrix elementslbtoincide with the For our computation we choseAt=0.001 and n
guantum number& associated with high pr(@), and simi- =1,2,...,50000Gi.e., the integration was carried out from
larly the quantum numbemn associated with large matrix t=0 tot=50000QAt=500). Repeating the same procedure

400 |

01t (a)
W
8 oo} |
o
183 FIG. 14. Probability distributions of delocal-
20 ized EF’s in terms of the unperturbed enefgy.
The solid and the dashed curves correspond to
classical and quantum distributions, respectively.
The delocalized EF's arda m=403 (Lpg
0 =3.41), (b) m=437 (Lpr=3.45), (c0 m
- =466 (Lpr=3.45), and (d m=499 (L;pr
EJTD =3.22).
£ o0.01
o
1E-3 [/

20
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for all 50 sets of initial points, we collected a total of unitary matrix U that diagonalizes the Hamiltonian of the
500 000< 50= 25 000 000 values dE,, from which the clas- system. In our model system the localization of LSDS can be
sical distribution shown in Fig. 12 was obtained. We noteexplained by considering the Hamiltonian structure. The off-
that the classical distribution computed as above is indeperdiagonal components dfl have a typical periodic structure
dent of the integration time stefot and of the number of the [Fig. 2(b)]; they are small at the edges of each subgroup of
trajectories. The corresponding quantum distribution is obeigenstates, while they are large at the middle of each sub-
tained by calculating group. One can see from Fig. 5 that the unperturbed eigen-
states corresponding to the edges of each subgroup also have
P (Ey)= 2 = (11) a largelL pg (which means strong localizatipnwhile the
mi =0 Eo<E,SEo+AE, unperturbed eigenstates corresponding to the middle of each
subgroup have a smadllpg (Which means delocalization or
where the summation is performed over those unperturbeleak localization An unperturbed eigenstate having small
eigenstates that have an eigeneneyin a fixed small  off-diagonal components can be nearly isolated from other
energy intervaEy<E, <Ey+ AE,, where for our computa- states. It thus exhibits a strong localization and has a large
tion AE, was taken to beAEy=E/80. For the stat¢m) L ,,5z. The structure of the off-diagonal components of the
considered in Fig. 12AE, is roughly given by 1. One can Hamiltonian considered in the present work is strongly dif-
see from Fig. 14 that a remarkable correspondence existerent from that of the conventional BRM where off-
between the classical and quantum probability distributiongliagonal matrix components are randomly chosen or have
of the delocalized EF’s. This means that the weak localizathe same value. The nonuniform structure of the off-diagonal
tion of the delocalized EF’s is a classical effect and is prob-components possesses information on the mixed type dy-
ably not related to quantuiidynamical localization. This is  namics(KAM tori and chaotic regiop of its classical coun-

in agreement with the previous result of REZ9)]. terpart. Therefore, the classical dynamics, the Hamiltonian
structure(especially the structure of the off-diagonal compo-
IV. CONCLUSIONS nentg, and the structure of EF’'s are closely related to one

another, which leads to the strong quantum-classical corre-

_ The main conclusion that can be reached from our invesg,,nqence observed in this work for both localized and de-
tigation is that there exists a strong correspondence betwegfi-jized EF's.

guantum and classical descriptions of the Pullen-Edmond

system. The strong localization of EF’s can be explained by

considering the corresponding classical motion on the KAM ACKNOWLEDGMENTS
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