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Quantum-classical correspondence in localization of eigenstates
for a system having mixed-type classical dynamics

Sang Wook Kim and Hai-Woong Lee
Department of Physics, Korea Advanced Institute of Science and Technology, Taejon 305-338, Korea

~Received 29 September 1998; revised manuscript received 29 December 1998!

We have examined the localization properties of quantum eigenstates for a system having mixed-type
classical dynamics. Emphasis is given to the structure of eigenfunctions and the local spectral density of states.
The nature of strongly localized eigenstates can be explained by considering the corresponding classical
motion on the Kolmogorov-Arnold-Moser tori. The weak localization of nearly delocalized eigenstates is not
a quantum effect as is dynamical localization but a consequence of classical dynamics.
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I. INTRODUCTION

The quantum-mechanical behavior of systems that
chaotic in the classical limit has been the subject of con
erable recent interest@1–3#. One major modification tha
quantum mechanics introduces to the classical picture of
terministic chaos is the suppression of chaotic diffusion
phenomenon usually referred to as dynamical localiza
~DL!. Since it was first observed in numerical simulations
the kicked rotator model@4#, this striking quantum phenom
enon, a dynamical version of Anderson localization in sol
@5#, has been under intense investigation. In particular, th
retical and experimental investigations of microwave ioni
tion of Rydberg atoms@6–10# and recently of momentum
transfer in cold atoms@11–14# have provided evidence fo
the appearance of DL.

It should be noted, however, that investigations conduc
up to now have been limited to DL occurring in time-drive
systems. Quantum calculations performed in the past h
treated the external driving force classically and sho
strictly speaking be categorized as semiclassical treatme
The question still remains whether the existence of DL
been confirmed by fully quantum calculations. Recently
has been shown@15# that DL also appears in a nearly circul
stadium billiard. From the estimate of the localization leng
in the angular momentum space, the authors of Ref.@15#
found that the statistics of neighboring level spacing co
change from Wigner-Dyson to Poisson when the ene
range is varied. To our knowledge this is the first eviden
for DL in a conservative Hamiltonian system.

How one should approach the question of localization
conservative Hamiltonian systems is not immediately cle
since energy is conserved in both classical and quantum
tems, we must follow the time evolution only on the ener
hypersurface. In classical mechanics this is easily realize
considering the dynamics on the energy hypersurface, bu
quantum mechanics the only states with fixed energy
eigenstates unless the spectrum is degenerate@16#. This is
resolved by considering the flow between phase-space lo
ized states~usually coherent states!. Another approach is to
investigate the localization properties of eigenstates fo
typical conservative Hamiltonian or random matrix ensem
PRE 591063-651X/99/59~5!/5384~9!/$15.00
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@17#, where in the latter the main attention is paid to t
banded random matrices~BRM! ensemble@18,19#. Casatiet
al. introduced the ergodicity parameterl depending on both
the band width and average localization length, which pla
an important role in determining the localization propert
in the BRM @20#. When it is large, the eigenfunctions~EF’s!
of BRM become ergodic, i.e., delocalized over the who
energy shell. In the opposite case, however, they appear t
localized in the eigenstate space of the unperturbed Ha
tonian. When quantum localization occurs, the EF’s w
shown to be typically narrow and solid with centers ra
domly scattered within a semicircle energy shell, while t
local spectral density of states~LSDS! is extended over the
whole shell, but is sparse.

Generic conservative Hamiltonian systems exhibit mixe
type dynamics; the regular Kolmogorov-Arnold-Mos
~KAM ! tori and irregular chaotic trajectories coexist in pha
space. In 1973 Percival conjectured that, in the semiclass
limit, the spectrum of a generic dynamical system consists
two parts with strong contrasting properties: a regular and
irregular part@21–23#. Bohigaset al. @24# achieved a sys-
tematic separation of eigenstates of two coupled quartic
cillators into a regular and an irregular group. The separa
was based on the observation that the levels associated
quantized tori appear as quasidegenerate doublets in
spectrum of systems having discrete symmetries. By stu
ing the regular and irregular spectra independently after
separation, they showed that Percival’s scheme works w

In this paper we address the issue of quantum localiza
in a typical generic conservative Hamiltonian syste
namely, the Pullen-Edmond system@25#. We look in particu-
lar for quantum-classical correspondence~or noncorrespon-
dence! by investigating the relation between the localizati
properties of LSDS and those of EF’s. Our model system
its Hamiltonian structure are described in Sec. II. In Sec.
localization properties of LSDS and EF’s are investigated
detail. For our model system the structure of LSDS can e
ily be interpreted by investigating classical dynamics. W
show eventually that a strong quantum-classical corresp
dence exists for both EF’s showing strong localization a
EF’s exhibiting delocaliztion or weak localization@26#. Fi-
nally, concluding remarks are given in Sec. V.
5384 ©1999 The American Physical Society
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II. MODEL SYSTEM AND HAMILTONIAN
STRUCTURE

The system we consider is the Pullen-Edmond system
two-dimensional autonomous Hamiltonian system repres
ing two nonlinearly coupled simple harmonic oscillato
The Hamiltonian for the system is given by

H~x,px ,y,py!5
1

2m
~px

21py
2!1

m

2
~vx

2x21vy
2y2!1

l

2
x2y2

[H01
l

2
x2y2. ~1!

For our computation we fixm51, vx50.8, vy51.25, and
l50.3 in an arbitrary unit system. We note that the transf
mationl→l85l/g (g 5 const! does not alter the dynami
cal nature of the system if the transformationx→x85Agx,
y→y85Agy, px→px85Agpx , py→py85Agpy , and thus

FIG. 1. The classical Poincare´ surfaces of section of the Pullen
Edmond system defined by Eq.~1! for the casem51, vx50.8,
vy51.25, l50.3, andlE519.75 in an arbitrary unit system.~a!
Thex-px plot drawn aty50 andpy.0. ~b! They-py plot drawn at
x50 andpx.0.
a
t-

.

-

E→E85gE (E is the total energy! is performed simulta-
neously. The geometry of classical phase space is thus d
mined only by the product ofl and E. When the scaling
parameterlE is small, many stable KAM tori originated
from resonances between the two degrees of freedom exi
the chaotic region. As the parameter increases, howe
most KAM tori are replaced by irregular trajectories a
only small portions of the phase space remain stable. W
the parameter exceeds approximately 12.0, nearly the e
phase space becomes irregular@27#, except the region nea
the origin in which the couplinglx2y2/2 is small and thus
the trajectories remain regular~see Fig. 1!.

We represent the total HamiltonianH in terms of the
eigenstates (nx ,ny) of the unperturbed HamiltonianH0,
where the matrix elements have the form

FIG. 2. ~a! Structure of the Hamiltonian matrixHa,a8 in terms
of the quantum numbersa, a8 of the eigenstates of the unperturbe
Hamiltonian H0 . Ha,a8 is nonzero only along the lines.~b! The
magnitude of the matrix elements represented by the square in~a!.
The diagonal values are set to zero for clarity.
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^nx8 ,ny8uHunx ,ny&5$\vx~nx11/2!1\vy~ny11/2!%dn
x8 ,nx

dn
y8 ,ny

1mAvxvyl$~2nx11!~2ny11!dn
x8 ,nx

dn
y8 ,ny

1Anx~nx21!ny~ny21!dn
x8 ,nx22dn

y8 ,ny221A~nx11!~nx12!ny~ny21!dn
x8 ,nx12dn

y8 ,ny22

1~2nx11!Any~ny21!dn
x8 ,nx

dn
y8 ,ny221Anx~nx21!~ny11!~ny12!dn

x8 ,nx22dn
y8 ,ny12

1A~nx11!~nx12!~ny11!~ny12!dn
x8 ,nx12dn

y8 ,ny121~2nx11!A~ny11!~ny12!dn
x8 ,nx

dn
y8 ,ny12

1~2ny11!Anx~nx21!dn
x8 ,nx22dn

y8 ,ny
1~2ny11!A~nx11!~nx12!dn

x8 ,nx12dn
y8 ,ny

%/16\. ~2!
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Due to the choice of different values ofvx and vy , our
system has the symmetry of theC2v point group which has
four irreducible representations referred to asA1 ,A2 ,B1, and
B2 @28#. From now on we only consider theA1 representa-
tion for which basis functions are even in bothx andy. Our
labeling of the basis, the eigenstates ofH0, uses a single
quantum numbera as indicated in Table I. These eigensta
can be divided conveniently into subgroups, each having
same value of (nx1ny).

Figure 2~a! shows the global structure of the matrix el
mentsHa,a8 , whose band structure differs from those of t
Wigner BRM and Ref.@29#. In particular we see from Fig
2~b! that off-diagonal elements have a typical periodic str
ture. The off-diagonal matrix elementsHa,a8 are small when
a and/ora8 correspond to the edges of a subgroup of eig
states associated with a smallnx or ny , while they are large
whena anda8 correspond to the middle of a subgroup. Th
has a simple classical interpretation. The classical trajecto
of a phase space point belonging to the edge states are
ably regular, because a smallnx(ny) means a small coupling
lx2y2/2 and thus oscillation occurs predominantly along
y(x) axis.

The periodic structure seen above can be better un
stood by examining the phase-space structure of the sys
For this purpose we choose to use the Q function, i.e.,
quantum phase-space distribution function in the cohe
state representation@30,31#. TheQ function best fits our pur-
pose because it has the simplest structure among qua
distribution functions and still displays all the essential fe
tures of the states of the system. TheQ function for an un-
perturbed eigenstateua& of our system characterized by th
quantum numbersnx andny is given by@31#

FQ~x,px ,y,py!5
1

~2p\!2nx!ny!
jx

nxe2jxjy
nye2jy, ~3!

where

jx5
mvxx

2

2\
1

px
2

2\mvx
~4!
s
e

-

-
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ob-

e

r-
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-

and

jy5
mvyy

2

2\
1

py
2

2\mvy
. ~5!

In Figs. 3~a! and 3~b! we plot FQ(x,px ,y50,py

5A2mEnx ,ny
2px

22m2vx
2x2) for the a565 (nx50,ny

520) and a560 (nx510,ny510) states, respectively
where we set\51 in an arbitrary unit system we adopt. Th
functionsFQ plotted in Figs. 3~a! and 3~b! may be consid-
ered as quantum Poincare´ surfaces of section correspondin
to the unperturbed eigenstates ofa565 anda560. One can
clearly see, by comparing Figs. 3~a! and 3~b! with Fig. 1~a!,
that the distribution of thea560 state is localized mostly a
the classically chaotic region, while that of thea565 state is
concentrated in the classical Kolmogorov-Arnold-Mos
~KAM ! island near the origin.

To gain further insight we consider the motion in the c
ordinate space. The classical KAM island near the origin
Fig. 1~a! corresponds to the straight line motion along they
axis indicated by the vertical line with arrows in Fig. 4. Th
motion may be considered as a classical representation o
a565 unperturbed eigenstate because this eigenstate
nx50 has no node along thex direction. We also show the
densityuc(x,y)u2 of the wave function of thea565 state in
the same figure.

III. LOCALIZATION OF EIGENSTATES

For our discussion of localization, we first find the unita
matrix U that diagonalizes the total HamiltonianH,

U†HU5Hdiagonal. ~6!

Denoting the matrix elements ofU as cm
a , wherea and m

refer, respectively, to the quantum numbers of the eig
states of the unperturbed HamiltonianH0 and the total
HamiltonianH, the column vector (cm

1 ,cm
2 ,cm

3 , . . . ) repre-
sents themth eigenstateum& of H expressed in terms of th
eigenstates ofH0 ~i.e., the spectrum of the stateum&), while
the row vector (c1

a ,c2
a ,c3

a , . . . ) represents theath eigen-
TABLE I. Labeling of eigenstates ofH0 belonging to theA1 representation.

a 0 1 2 3 4 5 ••• 55 56 57 58 59 60 61 62 63 64 65•••

nx 0 2 0 4 2 0 ••• 20 18 16 14 12 10 8 6 4 2 0 •••

ny 0 0 2 0 2 4 ••• 0 2 4 6 8 10 12 14 16 18 20•••
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stateua& of H0 expressed in terms of the eigenstates ofH.
The matrix elementscm

a now contain all the information con
cerning the localization properties of the eigenstates.

A. Localization of LSDS

In this paper we adopt the inverse partition ratio~IPR! as
the localization measure. The IPR of the unperturbed eig
stateua& is calculated from

L IPR~a!5N (
m51

N

ucm
a u4, ~7!

whereN is the total number of eigenstatesum& of the total
HamiltonianH. In our actual calculation ofL IPR(a), we have
included in the sum only classically accessible states am
all possible statesum&. The numberN in Eq. ~7! can thus be
considered as the number of classically accessible ei
statesum&, and it varies witha. L IPR(a) as defined by Eq.
~7! can take a value as large asN when the stateua& is most
highly localized~i.e., whencm

a is nonzero for only one par

FIG. 3. Quantum Poincare´ surfaces of section of the Q repre
sentation of~a! the a565 state and~b! the a560 state, which lie
mostly in the regular and irregular regions of the classical Poinc´
surfaces of section~Fig. 1!, respectively.x andpx are measured in
arbitrary units.
n-

ng

n-

ticular value ofm) and as small as 1 when the stateua& is
uniformly distributed ~i.e., when cm

a 51/AN for all m)
@32,34#.

Figure 5 showsL IPR of the unperturbed eigenstates whic
indicates clearly that the eigenstatesua& belonging to the
edges of each subgroup~i.e., those states with a smallnx or
ny) have large values ofL IPR. As explained in the previous
section, these states correspond classically to regular tra
tories around stable KAM tori and can thus be expected
exhibit strong localization. In order to emphasize the stro
correlation between localization and the quantum numb
(nx ,ny), we plot in Fig. 6L IPR versusnx /(nx1ny). Clearly,
L IPR is large whennx /(nx1ny)'0 ~i.e., whennx'0) and
when nx /(nx1ny)'1 ~i.e., whenny'0). We note that the
graph is not symmetric aboutnx /(nx1ny)50.5, becausevx
andvy are not the same.

B. Localization of EF

We also use IPR in order to investigate the localizat
properties of EF’s. The IPR of an eigenstateum& of the total
Hamiltonian is given by

FIG. 4. Representation in the coordinate space. The line w
arrows indicates the trajectory of the periodic orbit corresponding
the stable island. The densityuc(x,y)u2 of thea565 eigenfunction
and the potential energy contour are also shown.x andy are mea-
sured in arbitrary units.

FIG. 5. L IPR of LSDS for 300<a<700. The positions of the
eigenstates belonging to the edge of each subgroup are indicate
dashed lines.

re



i-

e
io

ra
ct
m

te
to
ig

o
of

f
It

a

as

he
wo-
of

ob-
be
-
-
is-

the

ble
cor-

as a

al-
tical

5388 PRE 59SANG WOOK KIM AND HAI-WOONG LEE
L IPR~m!5N (
a51

N

ucm
a u4, ~8!

whereN is now the total number of eigenstatesua& of the
unperturbed HamiltonianH0. We also consider only class
cally accessible states when calculatiingL IPR(m) according
to Eq. ~8!.

We choose EF’s, arranged in ascending order of eigen
ergy, from 300th to 700th, which correspond to the reg
19.75<lE<32.57. In this range oflE, almost the entire
classical phase space is chaotic. Figure 7 showsL IPR of these
eigenstates. The distribution seen in Fig. 7 seems rather
dom, in contrast to the regular pattern of Fig. 5. This refle
the fact that for a system having mixed type classical dyna
ics, it is normally difficult to tell whether a given eigensta
um& is associated with regular or irregular classical trajec
ries. Despite the difficulty, however, it can be seen from F
7 that the eigenstatesum& can largely be divided into two
groups, ‘‘localized states’’ characterized by large values
L IPR(m) and ‘‘delocalized states’’ having small values
L IPR(m). In Figs. 8~a! and 8~b!, respectively, we show the
spectrum of typical localized (m5534, L IPR5220.5) and de-
localized (m5535, L IPR53.588) states drawn in terms o
the quantum numbera of the unperturbed eigenstates.
should be noted that the (m5535) state of Fig. 8~b!, al-
though we call it a delocalized state to distinguish from

FIG. 6. L IPR versusnx /(nx1ny) of LSDS.

FIG. 7. L IPR of EF’s for 300<m<700.
n-
n

n-
s
-

-
.

f

strongly localized state such as the (m5534) state of Fig.
8~a!, is not completely delocalized, which we refer also to
weakly localized@26#.

In order to investigate further the characteristics of t
localized and delocalized states, we recast Fig. 8 into a t
dimensional shadow plot of the spectrum drawn in terms
the two quantum numbersnx and ny of the unperturbed
eigenstates. The result is shown in Fig. 9, where the pr
ability is indicated by the degree of darkness. It can
clearly seen that the localized (m5534) state has the prob
ability distribution localized nearnx50, whereas the delo
calized (m5535) state shows a more or less randomly d
tributed probability.

It may be worthwhile to recall that althoughnx andny are
not good quantum numbers for the system described by
total HamiltonianH, the mean valueŝnx& and ^ny& can of
course be defined and calculated for a given eigenstateum&
of H. In Fig. 10 we showL IPR(m) plotted as a function of
^nx&/^nx1ny&. One can immediately see that a remarka
correspondence exists between Fig. 10 and Fig. 6. This
respondence betweenL IPR of EF’s andL IPR of LSDS’s is
significant, because, as discussed earlier, the latter h
simple classical interpretation.

The physical characteristics of our localized and deloc
ized states can be best illustrated by looking at the statis
properties of eigenvalues@17,33# belonging to each group

FIG. 8. ~a! Spectrum of a typical localized EF for whichlE
527.78, m5534, andL IPR(m)5220.5. ~b! Spectrum of a typical
delocalized EF for whichlE527.81, m5535, and L IPR(m)
53.588.
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separately in Percival’s spirit@21#. We set the dividing line
between the localized and delocalized states to be a so
what arbitraryL IPR value of 10; i.e., EF’s withL IPR>10 are
considered as localized states and EF’s withL IPR,10 delo-
calized states. Our choice of theL IPR value 10 has no par
ticular physical significance. The results shown below
independent of this value, unless it is chosen unrealistic
too large or too small. With our choice ofL IPR510, there are

FIG. 9. Spectrum of~a! the localized (m5534) state and~b! the
delocalized (m5535) state drawn as a function ofnx andny . The
probability is indicated by the degree of darkness. The inset in~a!
shows an expanded view of the spectrum of the localizedm
5534) state.

FIG. 10. L IPR versus^nx&/^nx1ny& of EF’s.
e-

e
ly

161 localized states and 544 delocalized states within
range we consider. In Figs. 11~a! and 11~b! we show nearest-
neighbor level spacing distributions for the localized and
localized states, respectively. One can see that the level s
ing distributions of the localized and delocalized sta
exhibit roughly Poisson-like behavior and Wigner-like b
havior, respectively. For a closer look we show in Fig. 12 t

FIG. 11. Nearest neighbor level spacing distributions for~a! the
localized eigenstates having values ofL IPR larger than 10 and~b!
the delocalized eigenstates having values ofL IPR smaller than 10.
The solid and the dashed curves represent the Wigner~GOE! dis-
tribution and the Poisson distribution, respectively.

FIG. 12. D3 statistics for the localized eigenstates~open
squares! and the delocalized eigenstates~filled squares!. The solid
and the dashed curves represent the Wigner~GOE! distribution and
the Poisson distribution, respectively.
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5390 PRE 59SANG WOOK KIM AND HAI-WOONG LEE
D3 statistics of the eigenvalues of the localized and delo
ized states. It can be seen that the eigenvalues of the d
calized states follow the Wigner distribution fairly closel
while those of the localized states exhibit the behavior in
mediate between the Poisson and Wigner distributions.
mention that the level spacing distribution andD3 statistics
of the entire eigenvalues of both the localized and delo
ized states exhibit Wigner-like behavior.

Now we investigate the structure of the unitary matrixU.
In Fig. 13 we show the matrix elements whose absol
square is greater than 0.1. We mention that 0.1 has no
ticular physical meaning. It is simply a fairly large numbe
because, if we assume a uniform distribution in both E
and LSDS’s, the values of the matrix elements would
equal to 1/N('0.001). Comparing Fig. 13 with Fig. 5 an
with Fig. 7, it can be concluded that the quantum numbera
associated with large matrix elements ofU coincide with the
quantum numbersa associated with highL IPR(a), and simi-
larly the quantum numbersm associated with large matri

FIG. 13. The elements of the unitary matrixU having the abso-
lute square value larger than 0.1.
l-
lo-

r-
e

l-

e
ar-

s
e

elements ofU coincide with the quantum numbersm associ-
ated with highL IPR(m). This is another indication that th
localization of EF’s is directly linked to the localization o
LSDS’s which is in turn directly related to the localization
classical trajectories on the KAM tori. It is noted that th
upper branch and the lower branch in Fig. 13 correspond
the localization of EF’s along thex axis and they axis in the
coordinate space, respectively.

Finally we take a closer look at the localization propert
of delocalized EF’s having very smallL IPR (&3.5). We
have already seen from Fig. 8~b! that a typical delocalized
eigenstate is not completely delocalized, rather it is wea
localized and sparse. In Fig. 14 we show the probabi
distributions of some delocalized EF’s drawn as a function
the unperturbed energyE0 calculated by both classical an
quantum methods. To obtain the classical distribution,
first chose 50 sets of initial coordinates and mome
(x0 ,px0 ,y0 ,py0) on the constant total energy surfaceE
5Em , whereEm is the energy of the EF being considered.
order to assure that our initial points correspond to the de
calized EF, we first chosex0 and px0 randomly from the
chaotic sea of Fig. 1~a! and sety050. Thepy0 value is then
fixed by

1

2m
~px0

2 1py0
2 !1

m

2
vx

2x0
25Em . ~9!

For each set of initial points (x0 ,px0 ,y0 ,py0) so chosen, we
then computed numerically classical trajectories to obt
„x(tn),px(tn),y(tn),py(tn)…, where tn5nDt and Dt is the
time step for integration. At eachtn , we also computed
E0(tn) given by

E0~ tn!5
1

2m
@px

2~ tn!1py
2~ tn!#1

m

2
@vx

2x2~ tn!1vy
2y2~ tn!#.

~10!

For our computation we choseDt50.001 and n
51,2, . . . ,500 000~i.e., the integration was carried out from
t50 to t5500 000Dt5500). Repeating the same procedu
-

to
ly.
FIG. 14. Probability distributions of delocal
ized EF’s in terms of the unperturbed energyE0.
The solid and the dashed curves correspond
classical and quantum distributions, respective
The delocalized EF’s are~a! m5403 (L IPR

53.41), ~b! m5437 (L IPR53.45), ~c! m
5466 (L IPR53.45), and ~d! m5499 (L IPR

53.22).
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PRE 59 5391QUANTUM-CLASSICAL CORRESPONDENCE IN . . .
for all 50 sets of initial points, we collected a total o
500 000350525 000 000 values ofE0, from which the clas-
sical distribution shown in Fig. 12 was obtained. We no
that the classical distribution computed as above is indep
dent of the integration time stepDt and of the number of the
trajectories. The corresponding quantum distribution is
tained by calculating

Pm~E0!5 (
E0<Ea<E01DE0

ucm
a u2, ~11!

where the summation is performed over those unpertur
eigenstates that have an eigenenergyEa in a fixed small
energy intervalE0<Ea<E01DE0, where for our computa-
tion DE0 was taken to beDE05Em/80. For the stateum&
considered in Fig. 12,DE0 is roughly given by 1. One can
see from Fig. 14 that a remarkable correspondence e
between the classical and quantum probability distributi
of the delocalized EF’s. This means that the weak locali
tion of the delocalized EF’s is a classical effect and is pr
ably not related to quantum~dynamical! localization. This is
in agreement with the previous result of Ref.@29#.

IV. CONCLUSIONS

The main conclusion that can be reached from our inv
tigation is that there exists a strong correspondence betw
quantum and classical descriptions of the Pullen-Edm
system. The strong localization of EF’s can be explained
considering the corresponding classical motion on the KA
tori, and the weak localization of the delocalized EF’s can
understood in terms of the corresponding classical proba
ity distribution. There is no trace of quantum dynamical
calization in the autonomous Hamiltonian system being c
sidered.

One of the main issues of the quantum chaos rese
carried out recently on conservative systems is the struc
of EF’s. In this paper we investigated the relation betwe
the localization of LSDS and that of EF’s by considering t
si-
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unitary matrix U that diagonalizes the Hamiltonian of th
system. In our model system the localization of LSDS can
explained by considering the Hamiltonian structure. The o
diagonal components ofH have a typical periodic structur
@Fig. 2~b!#; they are small at the edges of each subgroup
eigenstates, while they are large at the middle of each s
group. One can see from Fig. 5 that the unperturbed eig
states corresponding to the edges of each subgroup also
a large L IPR ~which means strong localization!, while the
unperturbed eigenstates corresponding to the middle of e
subgroup have a smallL IPR ~which means delocalization o
weak localization!. An unperturbed eigenstate having sm
off-diagonal components can be nearly isolated from ot
states. It thus exhibits a strong localization and has a la
L IPR. The structure of the off-diagonal components of t
Hamiltonian considered in the present work is strongly d
ferent from that of the conventional BRM where of
diagonal matrix components are randomly chosen or h
the same value. The nonuniform structure of the off-diago
components possesses information on the mixed type
namics~KAM tori and chaotic region! of its classical coun-
terpart. Therefore, the classical dynamics, the Hamilton
structure~especially the structure of the off-diagonal comp
nents!, and the structure of EF’s are closely related to o
another, which leads to the strong quantum-classical co
spondence observed in this work for both localized and
localized EF’s.
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